Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present Hubble Space Telescope far-ultraviolet (FUV) spectra of a blue lurker–white dwarf (BL–WD) binary system in the 4 Gyr open cluster M67. We fit the FUV spectrum of the WD, determining it is a C/O WD with a mass of M⊙and a cooling age of ~400 Myr. This requires a WD progenitor of ~3M⊙, significantly larger than the current cluster turnoff mass of 1.3M⊙. We suggest the WD progenitor star formed several hundred megayears ago via the merger of two stars near the turnoff of the cluster. In this scenario, the original progenitor system was a hierarchical triple consisting of a close, near-equal-mass inner binary, with a tertiary companion with an orbit of a few thousand days. The WD is descended from the merged inner binary, and the original tertiary is now the observed BL. The likely formation scenario involves a common envelope while the WD progenitor is on the AGB, and thus the observed orbital period of 359 days requires an efficient common envelope ejection. The rapid rotation of the BL indicates it accreted some material during its evolution, perhaps via a wind prior to the common envelope. This system will likely undergo a second common envelope in the future and thus could result in a short-period double WD binary or merger of a 0.72M⊙C/O WD and a 0.38M⊙helium WD, making this a potential progenitor of an interesting transient such as a sub-Chandrasekhar Type Ia supernova.more » « lessFree, publicly-accessible full text available January 13, 2026
-
Abstract We present analyses of improved photometric and spectroscopic observations for two detached eclipsing binaries at the turnoff of the open cluster NGC 752: the 1.01 days binary DS And and the 15.53 days BD +37 410. For DS And, we findM1= 1.692 ± 0.004 ± 0.010M⊙,R1= 2.185 ± 0.004 ± 0.008R⊙,M2= 1.184 ± 0.001 ± 0.003M⊙, andR2= 1.200 ± 0.003 ± 0.005R⊙. We either confirm or newly identify unusual characteristics of both stars in the binary: the primary star is found to be slightly hotter than the main-sequence turnoff and there is a more substantial discrepancy in its luminosity compared to models (model luminosities are too large by about 40%), while the secondary star is oversized and cooler compared to other main-sequence stars in the same cluster. The evidence points to nonstandard evolution for both stars, but most plausible paths cannot explain the low luminosity of the primary star. BD +37 410 only has one eclipse per cycle, but extensive spectroscopic observations and the Transiting Exoplanet Survey Satellite light curve constrain the stellar masses well:M1= 1.717 ± 0.011M⊙andM2= 1.175 ± 0.005M⊙. The radius of the main-sequence primary star near 2.9R⊙definitively requires large convective core overshooting (>0.2 pressure scale heights) in models for its mass, and multiple lines of evidence point toward an age of 1.61 ± 0.03 ± 0.05 Gyr (statistical and systematic uncertainties). Because NGC 752 is currently undergoing the transition from nondegenerate to degenerate He ignition of its red clump stars, BD +37 410 A directly constrains the star mass where this transition occurs.more » « less
An official website of the United States government
